
Andrea Di Sorbo, PhD student
Sicurezza delle Reti e dei Sistemi Software

CdLM in Ingegneria Informatica
Università degli Studi del Sannio

(disorbo@unisannio.it)

Implementation of a Metamorphic
Engine

2. Register usage exchange: Different mutations of the
malware will have the same code, but will use
different registers. Signature based-detection is
possible through wildcards. Win95.Regswap
(December,1998) used this technique.

 Version 1 Version 2

 In the metamorphic engine implemented in the
previous exercise, add a new method to perform
Register Usage Exchange operations on the
target code.

 The new method:
1. Takes in input a file in assembly code

(hello_mutation.s)
2. Returns in output a new variant (hello_mutation2.s)

of the input file obtained through operations of
Register Usage Exchange (Each execution may
produce a different variant of the original file)

 Recompile the resulting file and verify that the
two executions (hello_mutation.s and
hello_mutation2.s) are equivalent.

Target Code. In this code
block we can apply
obfuscation techniques

hello_mutation.s hello_mutation2.s

%eax -> %edi

%edi -> %eax

%edi -> %eax

 %esi -> %ecx

%ecx -> %ebx

%ecx -> %ebx

 A static swap (e.g., %eax is always substituted by
%edi), would produce at each iteration the same
code.

 The substitutions should be established in a
random manner at each iteration.

 Designed substitutions should be applied for all
the instructions of the target code, (e.g.
if %ebx -> %eax, %eax should be replaced by
%ebx every time it appears in the code).

 A designed register may replace only one other
register (e.g., %eax and %ecx cannot be both
replaced by %ebx)

 Through a data structure you can keep track of the
substitutions.

 Stack pointer (%esp) and base pointer (%ebp)
registers should not be replaced

Register Replaced by

%eax %edi

%ebx %esi

%ecx %ebx

%edx %edx

%edi %eax

%esi %ecx

