
Andrea Di Sorbo, PhD student
Sicurezza delle Reti e dei Sistemi Software

CdLM in Ingegneria Informatica
Università degli Studi del Sannio

(disorbo@unisannio.it)

Implementation of a Metamorphic
Engine

 Metamorphic malware are malicious software
programs that have the ability to change their
code as they propagate, through a set of
transformation techniques.

 Metamorphic malware is rewritten with each
iteration so that the succeeding version of the
code is different from the preceding one.

 The code changes make it difficult for signature-
based antivirus software programs to recognize
that different iterations are the same malicious
program.

 Metamorphic malware modifies the code
structure without affecting the business logic.

 Polymorphic malware tries to evade the
signature-based detection through the
encryption.

 A polymorphic virus might have:
◦ a virus decryption routine (VDR);
◦ an encrypted virus program body (EVB).

 When an infected application launches, the VDR
decrypts the EVB back to its original form so the
virus can perform its intended function.

 Once executed, the virus is re-encrypted with a
new encryption key and added to another
vulnerable host application.

 The main limitation of the polymorphic
techniques is that the decrypted code is
essentially the same in each case thus
memory based signature detection is
possible.

 To overcome this limitation metamorphic
malware has the ability to automatically
recode itself each time it propagates. Thus
the code changes at each iteration.

 To change the structure of a malicious
code, a metamorphic engine performs 5
main actions:
1. Locate own code (locate the virus code)

2. Decode (de-obfuscate the virus code)

3. Analyze (in order to collect some useful
information)

4. Transform (through a set of heuristics)

5. Attach (enclose the new generation of the
malicious code in a host file)

1. Garbage Code Insertion: To change the byte sequence of
viral code the metamorphic engine inserts instructions that
have no effects. Win32/Evol virus (july,2000) exploits this
technique by inserting junk code among main instructions.

Version 1 Version 2

JUNK CODE

 Junk instructions have no effects on the
code’s functionalities.

 Junk instructions:
◦ Instructions that are semantically similar to nop

◦ Instructions sequences which momentarily
modify the machine state without affecting the
business logic

 Register usage exchange: This technique generates different
versions of the same virus, each one using the same code but
with different registers. The Win95.Regswap virus
(December,1998) used this technique to create different
variants of the virus.

 Version 1 Version 2

3. Instruction Replacement: This method actually substitutes
some instructions with their equivalent instructions in newer
copies. This method is like using different synonyms in
human language. Win95.Bistro used this technique.

 Some examples of readily realizable
replacements:

 Replace register moves with push/pop sequences

 xor/sub replacement

 or/test replacement

 add/sub (with complement operand) replacement

movl %eax, %ebx pushl %eax
popl %ebx

testl %eax, %eax orl %eax,%eax

addl $2, %eax subl $-2, %eax

xorl %edx, %edx subl %edx,%edx

 If you are using Windows systems:
1. Download and run setup.exe from:

http://www.cygwin.com

http://www.cygwin.com/

2. Click "next" to reach the "Select Packages" screen

3. In this screen select "Install" for the entry "Devel"

 Implement a metamorphic engine that:
1. Takes in input a file in assembly code (hello.s)

2. Returns in output a new variant (hello_mutation.s)
of the input file obtained through operations of
junk code insertion (Each execution may produce
a different variant of the original file)

 Recompile the resulting file and verify that
the two executions (hello.s and
hello_mutation.s) are equivalent.

hello.c

Target Code. In this code
block we can apply
obfuscation techniques

Automatic
generated

code

