Malware Analysis

Advanced Analysis

By Z-Lab team

The Reverse Engineering chain

Malware Author Malware Analyst
High-Level Language Low-level Language
int c; push ebp
printf("Hello.\n"); move ebp, esp
exit(0); sub esp, 0x40
CPU
Compiler Weiohine Code Disassembler
55
86 EC
88 EC 40

Figure 5-1. Code level examples

B

SixX Levels of Abstraction

. Hardware

Microcode

Machine code
Low-level languages
High-level languages
Interpreted languages

o 0k wWwhE

-_—____._-_

B

Six Levels of Abstraction

1. Hardware
— Digital circuits
— XOR, AND, OR, NOT gates
— Cannot be easily manipulated by software

2. Microcode
— Also called firmware

— Only operates on specific hardware it was
designed for

— Not usually important for malware analysis

__—_____-_

—

Six Levels of Abstraction

3. Machine code

— Opcodes
* Tell the processor to do something

« Created when a program written in a high-level
language is compiled

792415C0 55 push ebp

792415C1 89ES mov ebp, esp
792415C3 8B45 08§ mov eax, [ebp+0x08]
792415CH DBE28 fld tword [eax]
792415CE BB4D 0OC mov ecx, [ebp+0x0C]
702415CB DB29 fld tword [ecx]
792415CD DECL faddp

792415CF 8B55 10 mov edx, [ebp+0x10]
79241502 DE3A fstp tword [edx]
79241504 DEGS OA fld tword [eax+0x0a]
79241507 DBEG9 0A fld tword [ecx+0x0a]
79241 5DA DECL faddp

792415DC DBE7A 0A fstp tword [edx+0x04]
7924150DF 5D pop ebp

79241 5€E0 C2 0co0 ret Ox000C

B

Six Levels of Abstraction

4. Low-level languages

— Human-readable version of processor's
Instruction set

— Assembly language
« PUSH, POP, NOP, MOV, JMP ...

— Disassembler generates assembly language

— This is the highest level language that can be
reliably recovered from malware when source
code Is unavailable

__—_____-_

—

Six Levels of Abstraction

5. High-level languages
— Most programmers use these
— C, C++, etc.
— Converted to machine code by a compiler

$include <stdio.h>

int main() {
printf ("Hello, World\n"):;
return 0;

}

lIIIIIIIl---....__________4____.---llllllllllll

B

Six Levels of Abstraction

6. Interpreted languages
— Highest level
— Java, C#, Perl, .NET, Python
— Code is not compiled into machine code

— It Is translated into bytecode
« An intermediate representation
 Independent of hardware and OS

« Bytecode executes in an interpreter, which
translates bytecode into machine language on the
fly at runtime

. Ex: Java Virtual Machine —

—

X86 Architecture

« X86 (x64) ist

ne C

ominant architecture today

HNO

LOGY

'83 'S4 'S5 '86 '97 '88 '88 '00 'O 'O02 03 'O4 'O5 06 'O7 'O8 08 WO M

~ ——

B

X86 Architecture
. CISC vs RISC

— CISC .
« Eased programming effort in the early days
« Many, possibly complex (larger) instructions
 Larger instructions take more time to decode and execute
« Today, complex instructions often implemented as microcode
— RISC:
« Small, simple instructions
Popular in 90’s workstations
Require more instructions
Can run at higher clock speed due to simplicity
Reflected in microcode approach of new x86 CISC chips

-_—____._-_

—

X86 Registers

* Overview — 16-bit integer registers
— “General” purpose (with exceptions): AX, BX, CX, DX
— Pointer registers: SP (Stack pointer), BP (Base Pointer)
— For array indexing: DI, SI
— FLAGS regqister to store flags, e.g. CF, OF, ZF
— Instruction Pointer: IP

« Larger Registers (64 & 32bit) comprise the smaller ones
lower half
— 32 bit prefixed with “e”, 64 bit with “r”

63 31 15 7 O bit

—

X86 Registers

« Special Purpose Registers |Beaistess (FPw

ER¥ F7E&235E kernel32.BaseThreadIn it Thunk
ECH BEARRAEE B

— EIP - |nStrUCti0n POinter ED¥ B1267VELE woredist_#286. <Modu leEntryFoint >
EEX YEFDEREE
— EFLAGS - Flags ESP B829F 720
- ES7 Gooonbon

— EBP - Base Pointer EIF B1267ELE woredist_u8e,<Modu leEntoyFoint

ES QO2E =2bit GiFFFFFFFF)
CS @e23 S2bit BIFFFFFFFF)
3

« General Purpose Registers
— EAX - Accumulator Register
— EBX - Base Register
— ECX - Counter Register
— EDX - Data Register
— ESI - Source Index
— EDI - Destination Index
— EBP - Base Pointer
— ESP - Stack Pointer

—_—___—--_

o5 BBZE XDt BIFFFFFFFFD
05 BuZE =Zbit BLEFFFFEEED
FS 0a53 3:Zbit YEFDDEEE(FFF)
G5 BEZE =Zbit BIFFFFFFFEFD

LastEry BAEAERAE ERROR_SUCCESS

oOO—HwmrR Dm0
SIS S S

OllyDbg Register Window

3029827262524 23 222120191617 16151413121110 89 8 7 6 5 4 3 2 1 0

Vv

P|F

A
c

v
M

R
F{]

M
T

I
O
p
L

oD
FlF

I
E

T
F

sz
FF

A
S

0

F‘l-
F

C
E

X ID Flag (1D}
X Virtual Interrupt Pending (VIP)
X Virtual Interrupt Flag (VIF)

X Alignment Check (AC)

X Virtual-8086 Mode (VM)

Resume Flag (RF)
Nested Task (NT)

I/O Privilege Level (IOPL)

Overflow Flag (OF)

Direction Flag (DF)

Interrupt Enable Flag (IF)
Trap Flag (TF)

Zero Flag (ZF)

Auxiliary Carry Flag (AF)
Parity Flag (PF)

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag

X
X
X
S
C
X
X
S Sign Flag (SF)
S
S
S
S
S
C
X Indicates a System Flag

—_—_____-—

X86 EFLAGS Register

I-I'|

—

X86 EFLAGS Register

ZF Zero flag
— Set when the result of an operation is zero

CF Carry flag
— Set when result is too large or small for destination
SF Sign Flag

— Set when result is negative, or when most significant
bit is set after arithmetic

TF Trap Flag

— Used for debugging—if set, processor executes only
one instruction at a time

—

B

X86 EIP Register

« EIP = Extended Instruction Pointer

« Contains the memory address of the next
Instruction to be executed

* |f EIP contains wrong data, the CPU wiill
fetch non-legitimate instructions and crash

» Buffer overflows target EIP

__—_____--_

X86 Instructions & Addressing

« X86 Instructions range from 1 to 15 bytes

« X86 has 8-bit addressability

— For larger word size (most), address only specifies the low-order
byte

— The word size depends on the context (mode/instruction)

— Addresses must align with word size

— Addressable memory:
« 8086 20-bit address space (1MB)
« 80286 24-bit address space (16MB)
» 80386 32-bit address space (4GB)

« AMD Athlon/ Intel Core 2 64-bit address space, 48 bit implemented
(256TB)

—_—__.__--_

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

]
‘—___._-—_

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack

param 2

param 1

X86 Instructions & Addressing

» [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address

—»
ret addr.
param 2

param 1

1

‘—_.__._-_

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
 EBP is saved

ret addr.

param 2

param 1

X86 Instructions & Addressing

» [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:

« EBP is saved and set to ESP
—>

ret addr.
param 2

param 1

1

‘—_.__._-_

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
» CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
« EBP is saved and set to ESP

* Registers EDI, ESI, EBX are “callee saved’, i.e. need —»
to be saved (to the stack) if our program/function ret addr
uses them
param 2
param 1

1

-_—____._-_

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function

« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address local
— At the beginning of a program/function: EBX
- EBP is saved and set to ESP
« Registers EDI, ESI, EBX are “callee saved’, i.e. need —» EBP
to be saved (to the stack) if our program/function ret addr
uses them
- ESP is set to top of stack (incl. local variables) param 2
param 1

—_—__._._—_

X86 Instructions & Addressing

» [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
« EBP is saved and set to ESP
» Registers EDI, ESI, EBX are “callee saved’, i.e. need —»
to be saved (to the stack) if our program/function ret addr
uses them
« ESP is set to top of stack (incl. local variables) param 2
— At the end of a program/function param 1

-_—____._-_

X86 Instructions & Addressing

= |mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
 EBP is saved and set to ESP
* Registers EDI, ESI, EBX are “callee saved’, i.e. need —
to be saved (to the stack) if our program/function ret addr
uses them
- ESP is set to top of stack (incl. local variables) param 2
— At the end of a program/function param 1
 All registers are restored

-_—____._-_

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
 EBP is saved and set to ESP

» Regqisters EDI, ESI, EBX are “callee saved”, i.e. need —»
to be saved (to the stack) if our program/function ret addr
uses them
- ESP is set to top of stack (incl. local variables) param 2
— At the end of a program/function param 1

» All registers are restored
« LEAVE instruction clears the stack, i.e. sets ESP to
EBP

—

X86 Instructions & Addressing

= |mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
« EBP is saved and set to ESP

* Registers EDI, ESI, EBX are “callee saved’, i.e. need —»
to be saved (to the stack) if our program/function ret adadr
uses them
« ESP is set to top of stack (incl. local variables) param 2
— At the end of a program/function param 1
« All registers are restored
« LEAVE instruction clears the stack, i.e. sets ESP to —'l’

EBP and pops EBP

;—___-—

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
« EBP is saved and set to ESP
* Registers EDI, ESI, EBX are “callee saved”, i.e. need
to be saved (to the stack) if our program/function
uses them
« ESP is set to top of stack (incl. local variables)
— At the end of a program/function —
« All registers are restored
« LEAVE instruction clears the stack, i.e. sets ESP to —7
EBP and pops EBP

« RET instruction restores state in calling function ... I

X86 Instructions & Addressing

= [mportant for addressing are ESP and EBP
— Memory addressing in a program/function is relative to
the base pointer EBP
— Free memory space is indicated by the stack pointer ESP
— Stack grows negative relatively to base pointer

= X86 program/function calling conventions
— Before calling a function
« Save function parameters to the stack
« CALL saves return address to the stack and sets IP
to a specified address
— At the beginning of a program/function:
« EBP is saved and set to ESP
* Registers EDI, ESI, EBX are “callee saved”, i.e. need
to be saved (to the stack) if our program/function
uses them
« ESP is set to top of stack (incl. local variables)
— At the end of a program/function —
« All registers are restored
« LEAVE instruction clears the stack, i.e. sets ESP to —7
EBP and pops EBP

« RET instruction restores state in calling function ... I

The Reverse Engineering Chain

Malware Analyst
Low-level Language

Malware Author
High-Level Language

int c; push ebp

printf("Hello.\n"); move ebp, esp

exit{0); sub esp, 0x40

: CPU ;

Compiler Mheiahins Code Disassembler
55
88 EC
8B EC 40

Figure 5-1. Code Ievel examples

—

IDA Pro

IDA - The Interactive Dizassembler

Freeware Verzion 5.0

[c] 2010 Hex-Baps 54,

Welcome to the freeware edition of [D& Pra 5.0,
Thig werzion iz fully functional but does not offer all the bellz and
whistles af the commercial wersions of 1D Pra.

Ty the commercial werzion of D& Fro today!

bt fwanen hese-ranys . com

|| Do not display 104 B.4 info nest time

B —

