
Malware Analysis

By Z-Lab team

Advanced Analysis

The Reverse Engineering chain

Six Levels of Abstraction

1. Hardware

2. Microcode

3. Machine code

4. Low-level languages

5. High-level languages

6. Interpreted languages

Six Levels of Abstraction

1. Hardware

– Digital circuits

– XOR, AND, OR, NOT gates

– Cannot be easily manipulated by software

2. Microcode

– Also called firmware

– Only operates on specific hardware it was

designed for

– Not usually important for malware analysis

Six Levels of Abstraction

3. Machine code

– Opcodes

• Tell the processor to do something

• Created when a program written in a high-level

language is compiled

Six Levels of Abstraction

4. Low-level languages

– Human-readable version of processor's

instruction set

– Assembly language

• PUSH, POP, NOP, MOV, JMP ...

– Disassembler generates assembly language

– This is the highest level language that can be

reliably recovered from malware when source

code is unavailable

Six Levels of Abstraction

5. High-level languages

– Most programmers use these

– C, C++, etc.

– Converted to machine code by a compiler

Six Levels of Abstraction

6. Interpreted languages

– Highest level

– Java, C#, Perl, .NET, Python

– Code is not compiled into machine code

– It is translated into bytecode

• An intermediate representation

• Independent of hardware and OS

• Bytecode executes in an interpreter, which

translates bytecode into machine language on the

fly at runtime

• Ex: Java Virtual Machine

X86 Architecture

• X86 (x64) is the dominant architecture today

X86 Architecture

• CISC vs RISC
– CISC :

• Eased programming effort in the early days

• Many, possibly complex (larger) instructions

• Larger instructions take more time to decode and execute

• Today, complex instructions often implemented as microcode

– RISC:

• Small, simple instructions

• Popular in 90’s workstations

• Require more instructions

• Can run at higher clock speed due to simplicity

• Reflected in microcode approach of new x86 CISC chips

X86 Registers
• Overview – 16-bit integer registers

– “General” purpose (with exceptions): AX, BX, CX, DX

– Pointer registers: SP (Stack pointer), BP (Base Pointer)

– For array indexing: DI, SI

– FLAGS register to store flags, e.g. CF, OF, ZF

– Instruction Pointer: IP

• Larger Registers (64 & 32bit) comprise the smaller ones

lower half

– 32 bit prefixed with “e”, 64 bit with “r”

X86 Registers
• Special Purpose Registers

– EIP – Instruction Pointer

– EFLAGS - Flags

– ESP – Stack Pointer

– EBP – Base Pointer

• General Purpose Registers
– EAX - Accumulator Register

– EBX - Base Register

– ECX - Counter Register

– EDX - Data Register

– ESI - Source Index

– EDI - Destination Index

– EBP - Base Pointer

– ESP - Stack Pointer

OllyDbg Register Window

X86 EFLAGS Register

X86 EFLAGS Register

• ZF Zero flag

– Set when the result of an operation is zero

• CF Carry flag

– Set when result is too large or small for destination

• SF Sign Flag

– Set when result is negative, or when most significant

bit is set after arithmetic

• TF Trap Flag

– Used for debugging—if set, processor executes only

one instruction at a time

X86 EIP Register

• EIP = Extended Instruction Pointer

• Contains the memory address of the next

instruction to be executed

• If EIP contains wrong data, the CPU will

fetch non-legitimate instructions and crash

• Buffer overflows target EIP

X86 Instructions & Addressing
• X86 instructions range from 1 to 15 bytes

• X86 has 8-bit addressability

– For larger word size (most), address only specifies the low-order

byte

– The word size depends on the context (mode/instruction)

– Addresses must align with word size

– Addressable memory:

• 8086 20-bit address space (1MB)

• 80286 24-bit address space (16MB)

• 80386 32-bit address space (4GB)

• AMD Athlon/ Intel Core 2 64-bit address space, 48 bit implemented

(256TB)

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

X86 Instructions & Addressing

The Reverse Engineering Chain

IDA Pro

